Kloosterman sums for prime powers in P-adic fields
نویسنده
چکیده
L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
منابع مشابه
Explicit values of multi-dimensional Kloosterman sums for prime powers, II
For any integer m > 1 fix ζm = exp(2πi/m), and let Z ∗ m denote the group of reduced residues modulo m. Let q = pα, a power of a prime p. The hyper-Kloosterman sums of dimension n > 0 are defined for q by R(d, q) = ∑ x1,...,xn∈Z∗ q ζ x1+···+xn+d(x1···xn) q (d ∈ Zq), where x−1 denotes the multiplicative inverse of x modulo q. Salie evaluated R(d, q) in the classical setting n = 1 for even q, and...
متن کاملL-Functions for Symmetric Products of Kloosterman Sums
The classical Kloosterman sums give rise to a Galois representation of the function field unramfied outside 0 and ∞. We study the local monodromy of this representation at ∞ using l-adic method based on the work of Deligne and Katz. As an application, we determine the degrees and the bad factors of the L-functions of the symmetric products of the above representation. Our results generalize som...
متن کاملSpecial values of Kloosterman sums and binomial bent functions
Let p ≥ 7, q = p. Kq(a) = ∑ x∈Fpm ζ m 1 (x m−2+ax) is the Kloosterman sum of a on Fpm , where ζ = e 2π √ −1 p . The value 1− 2 ζ+ζ−1 of Kq(a) and its conjugate have close relationship with a class of binomial function with Dillon exponent. This paper first presents some necessary conditions for a such that Kq(a) = 1− 2 ζ+ζ−1 . Further, we prove that if p = 11, for any a, Kq(a) 6= 1− 2 ζ+ζ−1 . A...
متن کاملElliptic Curves , Modular Forms and Related
Nick Andersen (University of California, Los Angeles) Kloosterman sums and Maass cusp forms of half-integral weight ABSTRACT: Kloosterman sums play an important role in modern analytic number theory. I will give a brief survey of what is known about the classical Kloosterman sums and their connection to Maass cusp forms of weight 0. I will then talk about recent progress toward bounding sums of...
متن کاملIncomplete Kloosterman Sums and Multiplicative Inverses in Short Intervals
We investigate the solubility of the congruence xy ≡ 1 (mod p), where p is a prime and x, y are restricted to lie in suitable short intervals. Our work relies on a mean value theorem for incomplete Kloosterman sums.
متن کامل